Imunopatogeneza SARS-CoV-2 infekcije – za kolege

Autori: radna grupa za kliničke i terapijske aspekte UPK

Preuzeto sa sajta

Osnovno o SARS-CoV-2 virusu

Korona virusi su familija virusa koja uzrokuje respiratorne infekcije kod čoveka i životinja. Većina članova ove famije uzrokuje lakše respiratorne infekcije, dok koronavirus teškog akutnog respiratornog sindroma (engl. severe acute respiratory syndrome coronavirus, SARS-CoV) i koronavirus bliskoistočnog respiratorninog sindroma (MERS-CoV) izazivaju teže kliničke forme bolesti koje mogu da dovedu i do akutnog respiratornog distres sindroma (ARDS). Novootkriveni član familije koronavirusa, uzrokuje koronavirusnu bolest 2019 (COVID-19), respiratornu infekciju koja može da varira od asimtomtske do teške forme.

Građa SARS-CoV-2

SARS-CoV-2 je, kao i ostali korona virusi, RNK virus čiji nukleokapsid obavija omotač. U lipidnom dvosloju omotača nalaze se površinski proteini virusa: S-protein (engl. spike) i E-protein (engl. envelope) i M-protein (engl. membrane). Od strukturnih proteina u jezgru virusa je N-protein (engl. nucleocapsid) polimerni protein koji obuhvata RNK. Sem strukturnih proteina, virusni genom kodira i 16 nestrukturnih proteina među kojima su RNK-zavisna RNK polimeraza (RdRp), enzim za replikaciju virusa, proteaza, proteini koji omogućavaju skalpanje virusa, i proteini koji ometaju funkciju interferona (IFN), antivirusnih molekula naših ćelija (1, 2).

Struktura SARS-CoV-2; Preuzeto sa sajta 

Ulazak SARS-CoV-2 u ćelije

SARS-CoV-2 u početku ulazi i replikuje se u epitelnim ćelijama gornjih respiratornih puteva (GRP) tako što se veže za angiotenzin-konvertujući enzim (ACE)-2 na površini ovih ćelija S-proteinom (3, 4). S protein se sastoji iz dva domena S1 i S2.  S-protein se za ACE2 vezuje putem RBD (engl. receptor-binding domain, RBD), koji je uokviru S1 domena, a drugi, S2 domen posreduje u fuziji virusnog omotača i ćelijske membrane. Da bi SARS-CoV-2 ušao u ćeliju, enzimi vezani za ćelijsku membranu furin i TMPRSS2 odstranjuju S1 domen, što omogućava fuziju putem S2 domena (5, 6).

Ulazak SARS-CoV- 2 u ćeliju; Preuzeto sa sajta

U odnosu na SARS-CoV ima 10-20 puta veći afinitet za ACE-2, što mu omogućava laku replikaciju u epitelu GRP, uprkos relativnoj niskoj ekspresiji ACE-2 na ćelijama te regije (7, 8). Lak ulazak u ćelije verovatno objašnjava i relativno veliki broj kopija virusa u gornjim respiratornim putevima (9), povećani nivo oslobađanja virusa (4) i značajno lakše prenošenje (10) u odnosu na SARS-CoV. SARS-CoV-2 inhibiranja i proizvodnju IFN tipa I, II i III i to više nego SARS-CoV (11, 12), što dodatno objašnjava visoke nivoe virusa u GRP, kao i visoke stope prenosa u fazi pre pojave simptoma i od strane asimptomatskih ljudi, koji mogu činiti čak polovinu svih prenosa (13).

U donjim partijama respiratornog trakta SARS-Cov-2 inficira alveolarne epitelne ćelije tipa 2, što dovodi do njihove smrti apoptozom i piroptozom (14, 15). Dodatno, SARS-CoV-2 (16-19) inficira alveolarne makrofage (AM) i dovodi do njihove aktivacije. To nije iznenađujuće, s obzirom na neposrednu blizinu ovih imunih ćelija pneumocitima tipa II i njihovu ekspresiju ACE-2 kao receptora za virus (20-22).

Aktivacija imunskih, epitelnih i endotelnih ćelija

Smrt alveolarnih epitelnih i endotelnih ćelija usled infekcije virusom dovodi do oslobađanja molekulskih obrazaca oštećenja (engl. damage-associated molecular patterns, DAMP) (23-25). DAMP-ovi oslobođeni iz mrtvih ćelija su ligandi za receptore ćelija urođene imunosti, kao što su makrofagi. Vezivanje DAMP-ova ovim receptorima dovodi do aktivacije ovih urođenih ćelija.

Aktivirani makrofagi (AM) igraju glavnu ulogu u održavanju imunološke homeostaze u plućima, suočeni s invazijom patogena i oštećenjem tkiva usled zapaljenja. Glavni mehanizmi uključuju fagocitozu umirućih ćelija, izlučivanje antiinflamatornih medijatora kao što su transformišući faktor rasta (TGF)-β, prostaglandin E2 (PGE2) i polienoične masne kiseline (PFA), i inhibicija aktivacije T-ćelija u cirkulaciji (21, 22). Međutim, jednom aktivirani, makrofagi izlučuju niz proinflamatornih citokina i hemokina, kao što su TNF, IL-1β, IL-6 i IL-8 (26-28). Pored toga, AM takođe luče mikrovezikle koji sadrže visoke nivoe TNF (29). Ovo povećanje izlučivanja medijatora zapaljenja je praćeno povećanjem broja AM polariziranih u visoko inflamatorni ili M1 fenotip, a ne antiinflamatorni tolerogeni M2 fenotip koji preovladava u fiziološkim uslovim (30, 31).

TNF i IL-1 indukuju aktivaciju endotelnih ćelija (EC) (32, 33), što dovodi do značajnog povećanja propusnosti plućnog vaskularnog endotela (34). Aktivacija EC takođe podstiče regrutaciju neutrofila iz cirkulacije kroz regulaciju hemokina površinskih membrana, ponajviše CCL5, CXCL1, MCP-1 i IL-8, proteina površinske adhezije P-selektin, VCAM-1, ICAM-1 i niz glikozaminoglikana, koji igraju bitnu ulogu u vezivanju i migraciji neutrofila (35-37).

Aktivacija trombocita i neutrofila

Trombociti u plućnoj cirkulaciji se takođe aktiviraju visokim nivoima proinflamatornih citokina i reaktivnih oblika kiseonika koji luče alveolarni makrofagi i aktivirane epitelne ćelije tipa II (38). Aktivirani trombociti (AP) i sami postaju značajan izvor proinflamatornih citokina i reaktivnih oblika kiseonika (39-41). Stvaraju se kompleksi trombocita i neutrofila koji imaju manju brzinu u poređenju sa samo trombocitima i neutrofilima, a ovo svojstvo u kombinaciji sa povećanom adhezivnošću endotela povećava sekvestraciju neutrofila i trombocita u malim krvni sudovima pluća (42-44). Pored toga, aktivirani trombociti i neutrofili međusobno pojačavanju stvaranje proinflamatornih citokina i reaktivnih oblika kiseonika (engl. reactive oxigen species, ROS) (45-49). Ovo olakšava aktivaciju neutrofila, pojačavajući njihov kapacitet za fagocitozu i oslobađanje ROS-a i drugih citotoksičnih molekula kao što je mijeloperoksidaza (50, 51). Trombociti takođe stimulišu oslobađanje neutrofilnih ekstracelularnih klopki (engl. neutrophil extracellular traps, NET) (52, 53), DNK neutrofila koja ima ulogu u fagocitozi, i sledstvenu smrt neutrofila (54-56). Zauzvrat, NET-ovi stilmulišu povećanje nivoa aktivacije trombocita, agregacije i aktivaciju trombina posredovanu tkivnim faktorom, što rezultira pojačanom intravaskularnom koagulacijom (57-59).

Vremenom, kombinovani efekti aktiviranih EC, neutrofila i trombocita i NET-ova u plućnoj alveo-kapilarnoj mreži dovode do razvoja jakog zapaljenja i prokoagulantnog stanja koje se karakteriše hiperaktivacijom kaskade koagulacije i relativnim iscrpljivanjem fibrinolitičkog sistema, s prekomernom oslobađanjem proinflamatornih citokina, DAMP-ova i taloženjem fibrina. Ovo se opisuje kao imuno-tromboza (60-62). Ovo stanje ima glavnu patofiziološku ulogu u razvoju i pogoršanju sistemske sepse jer dovodi do stvaranja mikrotromba, razvoja DIC-a i sindroma multiple organske disfunkcije (63-65).

Imuno-patofiziologija ARDS-a. Preuzeto iz (66)

Pored pluća, ACE-2 je prisutan na ćelijama mnogih tkiva: pre svega na endotelu u krvnim sudovima mnogih organa, glatkim mišićnim ćelijama zida krvnih sudova, enterocitima, epitelnim ćelijama bubrežnih tubula i podocitima, β-ćelijama pankresa (8). Smatra se da bi virus mogao da ošteti tkiva van respiratornog trakta direktno, replikacijom u ćelijama parenhima, kao i replikacijom u endotelnim ćelijama, i sledstvenim poremećajem koagulacije usled povrede endotela (67). Još uvek nije razjašnjeno kako SARS-CoV-2 dospeva u različita tkiva i koliki je udeo direktnog oštećenja u van plućnim manifestacijama COVID-19.

Aktivacija T-lifmocita

Za sve navedeno zaslužan je prevashodno odgovor urođenih imunskih ćelija. Međutim, stanje teške hronične upale i oksidativnog stresa viđeno kod pacijenata sa uznapredovalim ARDS-om može dovesti do limfopenije, ugrožene funkcije leukocita i visokog odnosa broja pomoćničkin T-limfocita Th17 prema regulatornim T ćelijama (Treg) (68-73), doprinoseći patofiziologiji stanja. Th17 ćelije takođe igraju patološku ulogu u razvoju i pogoršanju ARDS-a (74). Glavni mehanizam je povećana proizvodnja IL-17 (75-77). Ovo je visoko citotoksični molekul koji može izazvati značajne nivoe oštećenja tkiva i igra glavnu ulogu u regrutaciji neutrofila s periferije (78). Visok nivo IL-17 pokazatelj je loše prognoze kod pacijenata sa ARDS-om (78). Važnost Th17 i Treg u patofiziologiji ARDS-a naglašavaju podaci koji sugerišu da je odnos Th17: Treg prediktor 28-dnevnog mortaliteta u kod pacijenta sa ARDS-om na mehaničkoj ventilaciji (78).

Treg igraju važnu ulogu u prevenciji i razrešenju ARDS-a na nekoliko načina, kao što su podsticanje klirensa neutrofila, inhibicija efekata IL-6 i podsticanje M2 polarizacije alveolarnih makrofaga (79). Treg takođe ublažavaju nekontrolisanu upalu putem sekrecije antiinflamatornih citokina IL-10 i TGF-β koji smanjuju proizvodnju TNF i IL-1β od strane rezidentnih i infiltrirajućih makrofaga (74, 79).

Kod većine obolelih od COVID-19 se ne razvijaju dugoročne sekvele (koliko je do sada poznato) kao što je fibroza pluća, koja je prisutna u oko 26% nalaza na CT-u (78). Međutim, abnormalan nalaz na CT-u, koji varira u pogledu težine i zahvaćenosti plućnog tkiva, u infekciji SARS-CoV-2 virusom je prisutan kod visokog broja obolelih, uključujući i asimptomatske bolesnike i decu (78). Fibroza je proces koji se dešava pod kontrolom makrofaga M2 fenotipa.

Poseban problem predstavlja i dugotrajna forma bolesti  (engl. „long covid“) koja ne predstavlja posledičnu onesposobljenost usled teške bolesti, već se javlja kod obolelih sa blažom kliničkom formom (80).

Iako u oštećenju tkiva posreduju imunske ćelije, protektivan celularni i humoralni imunski odgovor je suštinski način prevazilaženja ove infekcije, s obzirom da su terapijske mogućnosti ograničene (81). Iako se ne zna egzaktno koliko traje protektivan imunitet posredovan antitelima nakon SARS-CoV-2 infekcije, razumno je pretpostaviti da je uporediv sa trajanjem imuniteta nakon infekcija srodnim virusima – bar godinu dana (82). Na mogućnost detekcije antitela na SARS-CoV-2 utiče sama dinamika humoralnog imunskog odgovora i sposobnost detekcije testa koji se koristi. Senzitivnost raznih seroloških testova varira (83, 84), ali ni uz korišćenje najosetljivijih tehnika nije moguće detektovati antitela u ranoj simptomatskoj fazi. Implikacija je da je potpuno besmisleno koristiti serološke testove kao dijagnostičko sredstvo za dokazivanje prisustva/odsustva SARS-CoV-2 infekcije pre druge nedelje od početka simptoma infekcije (85).

Reference

  1. Ahmadpour D, Ahmadpoor P. How the COVID-19 Overcomes the Battle? An Approach to Virus Structure. Iranian journal of kidney diseases. 2020; 14:167-72.
  2. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282:1-23.
  3. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature medicine. 2020; 26:681-7.
  4. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. The New England journal of medicine. 2020; 382:1177-9.
  5. Yuan M, Wu NC, Zhu X, Lee C-CD, So RTY, Lv H, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020; 368:630.
  6. Bestle D, Heindl MR, Limburg H, van TVL, Pilgram O, Moulton H, et al. TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets. bioRxiv. 2020:2020.04.15.042085.
  7. Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, et al. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PloS one. 2012; 7:e35876.
  8. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of pathology. 2004; 203:631-7.
  9. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet. Infectious diseases. 2020; 20:565-74.
  10. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine. 2020; 27.
  11. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181:1036-45.e9.
  12. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral research. 2020; 178:104791.
  13. Liu L, Lei X, Xiao X, Yang J, Li J, Ji M, et al. Epidemiological and Clinical Characteristics of Patients With Coronavirus Disease-2019 in Shiyan City, China. Frontiers in cellular and infection microbiology. 2020; 10:284.
  14. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008; 372:127-35.
  15. Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. American journal of respiratory cell and molecular biology. 2013; 48:742-8.
  16. Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. Journal of medical virology. 2020; 92:568-76.
  17. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. The European respiratory journal. 2020; 55.
  18. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. The Lancet. Infectious diseases. 2020; 20:1135-40.
  19. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature medicine. 2020; 26:842-4.
  20. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European journal of internal medicine. 2020; 76:14-20.
  21. Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Respiratory research. 2018; 19:50.
  22. Huang X, Xiu H, Zhang S, Zhang G. The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators of inflammation. 2018; 2018:1264913.
  23. Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. American journal of physiology. Lung cellular and molecular physiology. 2020; 318:L215-l25.
  24. Sauler M, Bazan IS, Lee PJ. Cell Death in the Lung: The Apoptosis-Necroptosis Axis. Annual review of physiology. 2019; 81:375-402.
  25. Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, et al. Contributions of high mobility group box protein in experimental and clinical acute lung injury. American journal of respiratory and critical care medicine. 2004; 170:1310-6.
  26. Aberdein JD, Cole J, Bewley MA, Marriott HM, Dockrell DH. Alveolar macrophages in pulmonary host defence the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing. Clinical and experimental immunology. 2013; 174:193-202.
  27. Losa García JE, Rodríguez FM, Martín de Cabo MR, García Salgado MJ, Losada JP, Villarón LG, et al. Evaluation of inflammatory cytokine secretion by human alveolar macrophages. Mediators of inflammation. 1999; 8:43-51.
  28. Yang CY, Chen CS, Yiang GT, Cheng YL, Yong SB, Wu MY, et al. New Insights into the Immune Molecular Regulation of the Pathogenesis of Acute Respiratory Distress Syndrome. International journal of molecular sciences. 2018; 19.
  29. Soni S, Wilson MR, O’Dea KP, Yoshida M, Katbeh U, Woods SJ, et al. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax. 2016; 71:1020-9.
  30. Morrell ED, Bhatraju PK, Mikacenic CR, Radella F, 2nd, Manicone AM, Stapleton RD, et al. Alveolar Macrophage Transcriptional Programs Are Associated with Outcomes in Acute Respiratory Distress Syndrome. American journal of respiratory and critical care medicine. 2019; 200:732-41.
  31. Song C, Li H, Li Y, Dai M, Zhang L, Liu S, et al. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization. Experimental cell research. 2019; 382:111486.
  32. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nature reviews. Immunology. 2007; 7:803-15.
  33. Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: Part I. Circulation. 2003; 108:1917-23.
  34. Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability. Pulmonary circulation. 2014; 4:535-51.
  35. Cejkova P, Nemeckova I, Broz J, Cerna M. TLR2 and TLR4 expression on CD14(++) and CD14(+) monocyte subtypes in adult-onset autoimmune diabetes. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2016; 160:76-83.
  36. Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacology & therapeutics. 2015; 147:123-35.
  37. Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine & growth factor reviews. 2015; 26:673-85.
  38. Stark K. Platelet-neutrophil crosstalk and netosis. HemaSphere. 2019; 3:89-91.
  39. El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Current medicinal chemistry. 2019; 26:4145-65.
  40. Freedman JE. Oxidative stress and platelets. Arteriosclerosis, thrombosis, and vascular biology. 2008; 28:s11-6.
  41. Violi F, Pignatelli P, Basili S. Nutrition, supplements, and vitamins in platelet function and bleeding. Circulation. 2010; 121:1033-44.
  42. Graham GJ, Handel TM, Proudfoot AEI. Leukocyte Adhesion: Reconceptualizing Chemokine Presentation by Glycosaminoglycans. Trends in immunology. 2019; 40:472-81.
  43. Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiological reviews. 2016; 96:1211-59.
  44. Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014; 124:2625-34.
  45. Kornerup KN, Salmon GP, Pitchford SC, Liu WL, Page CP. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration. Journal of applied physiology (Bethesda, Md. : 1985). 2010; 109:758-67.
  46. Duerschmied D, Suidan GL, Demers M, Herr N, Carbo C, Brill A, et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood. 2013; 121:1008-15.
  47. Maugeri N, Rovere-Querini P, Evangelista V, Godino C, Demetrio M, Baldini M, et al. An intense and short-lasting burst of neutrophil activation differentiates early acute myocardial infarction from systemic inflammatory syndromes. PloS one. 2012; 7:e39484.
  48. Ghasemzadeh M, Hosseini E. Intravascular leukocyte migration through platelet thrombi: directing leukocytes to sites of vascular injury. Thrombosis and haemostasis. 2015; 113:1224-35.
  49. Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. International immunopharmacology. 2013; 17:1176-84.
  50. Assinger A, Buchberger E, Laky M, Esfandeyari A, Brostjan C, Volf I. Periodontopathogens induce soluble P-selectin release by endothelial cells and platelets. Thrombosis research. 2011; 127:e20-6.
  51. Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Frontiers in immunology. 2014; 5:678.
  52. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature medicine. 2007; 13:463-9.
  53. Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness. Chest. 2011; 139:658-68.
  54. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015; 126:242-6.
  55. Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negrotto S, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Journal of leukocyte biology. 2016; 99:153-62.
  56. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of thrombosis and haemostasis : JTH. 2014; 12:2074-88.
  57. Zucoloto AZ, Jenne CN. Platelet-Neutrophil Interplay: Insights Into Neutrophil Extracellular Trap (NET)-Driven Coagulation in Infection. Frontiers in cardiovascular medicine. 2019; 6:85.
  58. Elaskalani O, Abdol Razak NB, Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell communication and signaling : CCS. 2018; 16:24.
  59. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Jr., et al. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107:15880-5.
  60. Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration; international review of thoracic diseases. 2017; 93:212-25.
  61. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nature reviews. Immunology. 2013; 13:34-45.
  62. Kimball AS, Obi AT, Diaz JA, Henke PK. The Emerging Role of NETs in Venous Thrombosis and Immunothrombosis. Frontiers in immunology. 2016; 7:236.
  63. Nedeva C, Menassa J, Puthalakath H. Sepsis: Inflammation Is a Necessary Evil. Frontiers in cell and developmental biology. 2019; 7:108.
  64. Assinger A, Schrottmaier WC, Salzmann M, Rayes J. Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Frontiers in immunology. 2019; 10:1687.
  65. Dewitte A, Lepreux S, Villeneuve J, Rigothier C, Combe C, Ouattara A, et al. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients? Annals of intensive care. 2017; 7:115.
  66. Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O’Neil A, et al. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life sciences. 2020; 258:118166.
  67. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nature medicine. 2020; 26:1017-32.
  68. Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nature immunology. 2017; 18:1332-41.
  69. Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Frontiers in immunology. 2018; 9:339.
  70. Morris G, Anderson G, Galecki P, Berk M, Maes M. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC medicine. 2013; 11:64.
  71. Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Molecular neurobiology. 2014; 49:741-56.
  72. Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, et al. Multiple Immune-Inflammatory and Oxidative and Nitrosative Stress Pathways Explain the Frequent Presence of Depression in Multiple Sclerosis. Molecular neurobiology. 2018; 55:6282-306.
  73. Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, et al. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Frontiers in immunology. 2018; 9:2569.
  74. Wong JJM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immuno-pathogenesis of acute respiratory distress syndrome. Annals of translational medicine. 2019; 7:504.
  75. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet. Respiratory medicine. 2020; 8:420-2.
  76. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell host & microbe. 2020; 27:992-1000.e3.
  77. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. The Journal of clinical investigation. 2020; 130:2202-5.
  78. Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM. Interleukin-17A Is Associated With Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome. Critical care medicine. 2016; 44:496-502.
  79. Lin S, Wu H, Wang C, Xiao Z, Xu F. Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications. Frontiers in immunology. 2018; 9:1545.
  80. Wise J. Covid-19: Study reveals six clusters of symptoms that could be used as a clinical prediction tool. BMJ. 2020; 370:m2911.
  81. Pan H, Peto R, Karim QA, Alejandria M, Henao-Restrepo AM, García CH, et al. Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results. medRxiv. 2020:2020.10.15.20209817.
  82. Baumgarth N, Nikolich-Žugich J, Lee FE, Bhattacharya D. Antibody Responses to SARS-CoV-2: Let’s Stick to Known Knowns. Journal of immunology (Baltimore, Md. : 1950). 2020; 205:2342-50.
  83. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020; 71:778-85.
  84. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. Jama. 2020; 323:2249-51.
  85. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. Jama. 2020; 324:782-93.

 

Leave a Comment

Your email address will not be published. Required fields are marked *